Technology-Based Parabolic Motion in Physics Education: A Systematic Literature Review

Authors

  • Diyah Ayu Kuntari Faculty of Education for Mathematics, Natural Sciences, and Information Technology, Universitas PGRI Semarang Author https://orcid.org/0009-0003-8587-905X
  • Sigit Ristanto Faculty of Education for Mathematics, Natural Sciences, and Information Technologies, Universitas PGRI Semarang Author https://orcid.org/0000-0003-1395-8739
  • Joko Siswanto Faculty of Education for Mathematics, Natural Sciences, and Information Technologies, Universitas PGRI Semarang Author https://orcid.org/0000-0002-3655-9362
  • Wawan Kurniawan Faculty of Education for Mathematics, Natural Sciences, and Information Technologies, Universitas PGRI Semarang Author

DOI:

https://doi.org/10.26877/lpt.v5i1.318

Keywords:

parabolic motion, technology-based, physics education

Abstract

Parabolic motion based on technology is a major concern in physics education because this concept is fundamental but requires the integration of complex mathematical, visual, and conceptual representations. Although various learning technologies have been used, research that systematically examines the relationship between the type of technology, pedagogical approach, and learning outcomes on the topic of parabolic motion is still limited and fragmented. This systematic literature review follows the PRISMA 2020 guidelines to analyze 26 peer-reviewed studies published between 2016 and 2025, selected from the Scopus and ERIC databases. The analysis focused on three main aspects, namely learning technology categories, related pedagogical methods, and reported learning outcomes, including conceptual understanding, higher-order thinking skills (HOTS), and the possibility of computational integration. The synthesis results show that the effectiveness of technology in teaching parabolic motion does not depend on the platform used, but is largely determined by the underlying pedagogical design. Interactive simulations and computational modeling combined with inquiry, problem-solving, or project-based approaches typically have a positive effect on conceptual understanding and HOTS development, while the use of passive visual technology has a more minimal impact. In addition, several studies show the potential for developing computational skills related to artificial intelligence preparation, although these results have not been clearly implemented in many studies. This research contributes by designing a pedagogical-technological classification framework for parabolic motion learning that can serve as a conceptual map for educators and researchers in adjusting technology choices to conceptual, cognitive, and computational learning objectives in physics education.

Downloads

Download data is not yet available.

References

Abdillah, U. F., Mahardika, I. K., Handayani, R. D., & Gunawan, G. (2021). Multiple representation based physics learning to improve students learning outcomes at SMAN 3 Jember on projectile motion materials. In D. Wahyuni (Ed.), J. Phys. Conf. Ser., 1832(1). IOP Publishing Ltd; Scopus. https://doi.org/10.1088/1742-6596/1832/1/012045

Anggraini, R., Darvina, Y., Amir, H., Murtiani, M., & Yulkifli, Y. (2018). Electronic Module Design with Scientifically Character-Charged Approach on Kinematics Material Learning to Improve Holistic Competence of High School Students in 10th Grade. In Ramli, Yulkifli, Festiyed, M. Azhar, R. Sumarmin, Alizar, D. H. Putri, & A. Putra (Eds.), IOP Conf. Ser. Mater. Sci. Eng., 335(1), Institute of Physics Publishing [email protected]; Scopus. https://doi.org/10.1088/1757-899X/335/1/012075

Aslan, F., & Buyuk, U. (2021). Misconceptions in Projectile Motion and Conceptual Changes via Geogebra Applications. European Journal of Educational Sciences, 8(3), 42–62. https://doi.org/10.19044/ejes.v8no3a42

Astra, I. M., & Kartini, K. (2023). E-learning based on PjBL integrated to STEM using microsoft sway on parabol motion materials to improve critical thinking ability of high school class X students. In F. C. Wibowo, B. Costu, B. Arymbekov, Taufik, N. A. Rahman, M. Attom, D. Muliyati, H. Suhendar, L. A. Sanjaya, & U. R. Fitri (Eds.), J. Phys. Conf. Ser., 2596(1). Institute of Physics; Scopus. https://doi.org/10.1088/1742-6596/2596/1/012072

Azhar, T. A. N., Mulyaningsih, N. N., Saraswati, D. L., Nurjanah, N., Marliani, N., Nursa’Adah, F. P., Sari, N. I., Lestari, I., & Nurjanah, N. (2021). Video analysis of basketball throws for parabolic motion learning materials. J. Phys. Conf. Ser., 1816(1). Scopus. https://doi.org/10.1088/1742-6596/1816/1/012077

Bachtiar, R. W., Meulenbroeks, R. F. G., & van Joolingen, W. R. (2021). Stimulating Mechanistic Reasoning in Physics Using Student-Constructed Stop-Motion Animations. Journal of Science Education and Technology, 30(6), 777–790. Scopus. https://doi.org/10.1007/s10956-021-09918-z

Celestino-Salcedo, R. K. M., Malayao, S. O., Salic-Hairulla, M. A., Castro, E. J., & Mordeno, I. C. V. (2024). Vodcast embedded with physics education technology simulation in learning projectile motion. Journal of Education and Learning, 18(3), 1047–1055. Scopus. https://doi.org/10.11591/edulearn.v18i3.21434

Chen, C. X., Wang, X. C., Peng, G., Wang, W., Gao, B., Feng, J. C., & Zhang, B. (2023). Analysis Model for Damage of PBO Composite Laminate Target by High-Velocity Projectile Penetration. J. Phys. Conf. Ser., 2460(1). Scopus. https://doi.org/10.1088/1742-6596/2460/1/012080

Chin, D. B., Chi, M., & Schwartz, D. L. (2016). A Comparison of Two Methods of Active Learning in Physics: Inventing a General Solution versus Compare and Contrast. Instructional Science: An International Journal of the Learning Sciences, 44(2), 177–195. https://doi.org/10.1007/s11251-016-9374-0

Chinaka, T. W. (2021). The Effect of PhET Simulation vs. Phenomenon-Based Experiential Learning on Students’ Integration of Motion along Two Independent Axes in Projectile Motion. African Journal of Research in Mathematics, Science and Technology Education, 25(2), 185–196. https://doi.org/10.1080/18117295.2021.1969739

Delubom, S., & Tatira, B. (2025). Integrating PHET simulations and YouTube videos in teaching vertical projectile motion in Grade 12. Multidisciplinary Science Journal, 7(11). Scopus. https://doi.org/10.31893/multiscience.2025526

Dewi, N. R., Listiaji, P., Akhlis, I., Kurniawan, I. O., & Widyaningrum, R. A. (2023). Project-based Laboratory Rotation Blended Learning Model to Train Students’ Critical Thinking and Collaboration in Physics Course. In B. Yuliarto, H. Susanto, M. R. Regina, M. Nurjayadi, G. Molnar, Y. Andriani, W. T. Kyaw, A. P. Metaragakusuma, H. S. Panigoro, & S. A. Jose (Eds.), E3S Web Conf., 400. EDP Sciences; Scopus. https://doi.org/10.1051/e3sconf/202340001023

Dramae, A., Toedtanya, K., & Wuttiprom, S. (2017). Selected Screen for Engaging Students in Projectile Motion. J. Phys. Conf. Ser., 901(1). Scopus. https://doi.org/10.1088/1742-6596/901/1/012129

Fitri, U., Yulkifli, Y., & Syafriani, S. (2019). Validity of development of student’s worksheet based on problem-based learning model on parabolic motion materials assisted by digital display practicum. In Ramli, Yohandri, Festiyed, C. Wurster, R. Jaafar, & S. Abu Bakar (Eds.), J. Phys. Conf. Ser. 1185(1). Institute of Physics Publishing [email protected]; Scopus. https://doi.org/10.1088/1742-6596/1185/1/012061

Halim, A., & Hamid, A. (2021). Application of GeoGebra media in teaching the concept of particle kinematics in 1D and 2D. In M. Meiliasari, Y. Rahmawati, M. Delina, & E. Fitriani (Eds.), AIP Conf. Proc., 2331. American Institute of Physics Inc.; Scopus. https://doi.org/10.1063/5.0041624

Handayani, L., Aji, M. P., & Marwoto, P. (2016). Bringing Javanesse Traditional Dance into Basic Physics Class: Exemplifying Projectile Motion through Video Analysis. J. Phys. Conf. Ser., 739(1). Scopus. https://doi.org/10.1088/1742-6596/739/1/012073

la Aca, A., Sulisworo, D., & Maruto, G. (2020). The validity of flipped classroom learning videos on the material of parabolic motion. Universal Journal of Educational Research, 8(10), 4863–4869. Scopus. https://doi.org/10.13189/ujer.2020.081058

Lestari, P. D., & Mansyur, J. (2021). The influence of the online PhET simulation-assisted using direct instruction on student’s conceptual understanding of parabolic motion. J. Phys. Conf. Ser., 2126(1). Scopus. https://doi.org/10.1088/1742-6596/2126/1/012013

Liu, Q., Blackman, M., Perkins, K. K., & Lewandowski, H. J. (2025). Student engagement with statistical noise features in PhET’s Projectile Data Lab simulation. In A. Pawl, J. P. Zwolak, & A. E. Leak (Eds.), Phys. Educ. Res. Conf. Proc., 234–239. American Association of Physics Teachers; Scopus. https://doi.org/10.1119/perc.2025.pr.Liu

Nasbey, H., Apriliani, N. P., Kurniawan, A. F., Samsudin, A., & Fadlan, A. (2024). The Effectiveness of the Dilemma-STEAM Learning Model Based on Motion Graphic Videos in the Subject of Parabolic Motion. In R. Fahdiran, H. Suhendar, T. B. Prayitno, Umiatin, H. Nasbey, W. Indrasari, & W. Fitriani (Eds.), J. Phys. Conf. Ser., 2866(1). Institute of Physics; Scopus. https://doi.org/10.1088/1742-6596/2866/1/012118

Raras, M., & Kuswanto, H. (2019). Developing jemparingan tradition-based and android- assisted learning media for improving the graphic and vector representation ability. International Journal of Interactive Mobile Technologies, 13(5), 58–74. Scopus. https://doi.org/10.3991/ijim.v13i05.9926

Saputra, M. R. D., & Kuswanto, H. (2018). Development of Physics Mobile (Android) Learning Themed Indonesian Culture Hombo Batu on the Topic of Newton’s Law and Parabolic Motion for Class X SMA/MA. In A. W. Subiantoro, S. Suyanto, & F. B. Butar (Eds.), J. Phys. Conf. Ser., 1097(1). Institute of Physics Publishing [email protected]; Scopus. https://doi.org/10.1088/1742-6596/1097/1/012023

Siswanto, J., Khoiri, N., & Saphira, H. V. (2025). The Effectiveness of The Algodoo-Assisted Ibmro Model In Improving Physics Problem-Solving Skills. Jurnal Pendidikan IPA Indonesia, 14(3), 496–508. Scopus. https://doi.org/10.15294/jpii.v14i3.26670

Supriyanto, E. (2021). The improvement of critical thinking skills through problem based learning models assisted by trackers video on parabolic movements. J. Phys. Conf. Ser., 2019(1). Scopus. https://doi.org/10.1088/1742-6596/2019/1/012029

Taufiq, M., Kaniawati, I., & Samsudin, A. (2024). Computational modeling of parabolic motion with air resistance using scratch programming. In M. Satriawan, M. Khoiro, F. Fitriana, E. Suaebah, M. N. Fahmi, A. Realita, & U. A. Deta (Eds.), J. Phys. Conf. Ser., 2900(1). Institute of Physics; Scopus. https://doi.org/10.1088/1742-6596/2900/1/012040

Villada Castillo, J. F., Bohorquez-Santiago, L., & Martínez García, S. (2025). Optimization of Physics Learning Through Immersive Virtual Reality: A Study on the Efficacy of Serious Games. Applied Sciences (Switzerland), 15(6). Scopus. https://doi.org/10.3390/app15063405

Wijayanti, A., Kuswanto, H., Rahmat, A. D., Samsudin, A., Purnama, A. Y., Jumadi, J., & Wiyarsi, A. (2025). An analysis of the motion of Hombo Batu jumping in nias using trackers, GNU octave and spreadsheets. Revista Mexicana de Fisica E, 22(2). Scopus. https://doi.org/10.31349/RevMexFisE.22.020203

Downloads

Published

2026-01-28

Data Availability Statement

The data used in this study were obtained from scientific articles that were published openly and accessible through relevant journal databases. The list of articles analyzed and the study selection flow (PRISMA diagram) are presented in the article. There is no additional raw data beyond what is included in this article.

Issue

Section

Articles - Physics Education

How to Cite

Kuntari, D. A., Ristanto, S., Siswanto, J., & Kurniawan, W. (2026). Technology-Based Parabolic Motion in Physics Education: A Systematic Literature Review. Lontar Physics Today, 5(1), 69-86. https://doi.org/10.26877/lpt.v5i1.318