Scientific Reasoning Skills in Physics Education: A Preliminary Analysis of High School Students’ Competence in Temperature and Heat

Authors

DOI:

https://doi.org/10.26877/lpt.v5i1.220

Keywords:

scientific reasoning skills, physics learning, temperature and heat

Abstract

Scientific reasoning skills play a crucial role in understanding physics concepts through cause–effect analysis and evidence-based reasoning. However, physics learning that remains predominantly focused on problem-solving tasks has resulted in students being less accustomed to engaging in systematic scientific thinking. This study aims to analyze and describe the level of scientific reasoning skills of high school students on the topic of temperature and heat as an initial effort to map their scientific reasoning profiles. The research employed a quantitative descriptive method with 36 twelfth-grade students from a public senior high school in Tasikmalaya as participants. The research instrument consisted of a two-tier multiple-choice test developed based on Lawson’s six indicators of scientific reasoning, namely conservation reasoning, proportional reasoning, control of variables, probability reasoning, correlation reasoning, and hypothetical-deductive reasoning. The results indicate that students’ scientific reasoning skills are still within the moderate category, with an average score of 51.85, suggesting that their scientific thinking skills have not yet developed optimally. The indicator-based analysis shows the highest achievement in control of variables and the lowest in correlation reasoning and hypothetical-deductive reasoning, indicating that students are more capable of engaging in concrete reasoning than in abstract and deductive reasoning. These findings emphasize the need for physics instruction that provides a greater opportunity for scientific reasoning activities. The Creative Problem Solving (CPS) model is recommended because it has the potential to facilitate critical, creative, and evidence-based thinking in solving physics problems.

Downloads

Download data is not yet available.

References

Anjani, F., Supeno, S., & Subiki, S. (2020). Kemampuan Penalaran Ilmiah Siswa SMA Dalam Pembelajaran Fisika Menggunakan Model Inkuiri Terbimbing Disertai Diagram Berpikir Multidimensi. Lantanida Journal, 8(1). https://doi.org/10.22373/lj.v8i1.6306

Anjiana, R., Makiyah, Y. S., & Susanti, E. (2024). Pengaruh Model Creative Problem Solving (CPS) Terhadap Self Efficacy dan Keterampilan Berpikir Kreatif Peserta Didik Pada Materi Optik. Jurnal Penelitian Pembelajaran Fisika, 15(2), 204–212. https://doi.org/10.26877/jp2f.v15i2.17896

Arikunto, S. (2019). Prosedur Penelitian Suatu Pendekatan Praktik (15th ed.). Jakarta: PT. Rineka Cipta.

Chusna, I. F., Aini, I. N., Putri, K. A., & Elisa, M. C. (2024). Literatur Review: Urgensi Keterampilan Abad 21 Pada Peserta Didik. Jurnal Pembelajaran, Bimbingan, Dan Pengelolaan Pendidikan, 4(4), 1. https://doi.org/10.17977/um065.v4.i4.2024.1

Creswell, J. W. (2019). Research Design; Qualitative, Quantitative & Mixed Method Approaches (5th ed.). Yogyakarta: Pustaka Pelajar.

Fawaiz, S., Handayanto, S. K., & Wahyudi, H. S. (2020). Eksplorasi Keterampilan Penalaran Ilmiah Berdasarkan Jenis Kelamin Siswa SMA. Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan, 5(7), 934–943. http://journal.um.ac.id/index.php/jptpp

S. N., Suhendar, S., & Ramdhan, B. (2021). Profil Kemampuan Penalaran Ilmiah Siswa SMP Berdasarkan Gaya Belajar. Biodik, 7(3), 156–163. https://doi.org/10.22437/bio.v7i3.13347

Fitri, N., Arif, K., Lestari, T., & Yanto, F. (2025). The Effect of Creative Problem-Solving Model on Students’ Creative Thinking Skills. SEMESTA: Journal of Science Education and Teaching, 8(2), 75–83. https://doi.org/10.24036/semesta/vol8-iss2/625

García-Carmona, A. (2025). Scientific Thinking and Critical Thinking in Science Education: Two Distinct but Symbiotically Related Intellectual Processes. Science & Education, 34(1), 227–245. https://doi.org/10.1007/s11191-023-00460-5

Hairunnisa, R., Burhanuddin, B., Junaidi, E., & Al Idrus, S. W. (2023). Pengembangan Instrumen Evaluasi Two-Tier Multiple Choice Menggunakan Personal Computer Untuk Mengukur Pemahaman Konsep Siswa Pada Materi Larutan Penyangga. Chemistry Education Practice, 6(1), 114–122. https://doi.org/10.29303/cep.v6i1.3372

Hara, A. K., Astiti, K. A., & Lantik, V. (2023). Analisis Penguasaan Konsep Fisika pada Materi Suhu dan Kalor Pasca Pembelajaran Online di Kelas XI SMA Negeri 12 Kota Kupang. Jurnal Ilmu Pendidikan (JIP) STKIP Kusuma Negara, 14(2), 118–126. https://doi.org/10.37640/jip.v14i2.1548

Inhelder, B., & Piaget, J. (1958). The Growth of Logical Thinking: From Childhood to Adolescence. Basic Books. https://doi.org/10.1037/10034-000

Jogdand, S., & Naqvi, W. (2023). Sample Size in Educational Research: A Rapid Synthesis. F1000Research, 1–11. https://doi.org/10.12688/f1000research.141173.1

Kapul, M., Lantik, V., & Astiti, K. A. (2023). Analisis Miskonsepsi Siswa dan Alternatif Remediasinya Pada Konsep Suhu dan Kalor. Jurnal Pendidikan dan Pembelajaran IPA Indonesia, 13(1), 17–23. https://doi.org/10.23887/jppii.v13i1.56275

Lawson, A. E. (2004). The Nature and Development of Scientific Reasoning: A Synthetic View. International Journal of Science and Mathematics Education, 2(3). https://doi.org/10.1007/s10763-004-3224-2

Lestari, A., Utari, S., & Imansyah, H. (2013). Analisis Scientific Reasoning Siswa Pada Pokok Bahasan Optik. Jurnal Wahana Pendidikan Fisika, 1(2), 102–107. https://ejournal.upi.edu/index.php/WapFi/article/view/61779

Mayasyafira, S., Ekawati, E., & Astuti, L. (2025). Profiles of Science Reasoning from Lawson’s Perspective: A Comparative Study of Gender, School Location, and Practicum Experience. Jurnal Pendidikan Fisika, 13(3), 363–383. https://doi.org/10.26618/0vxb4t98

Mayasyafira, S., Ekawati, E. Y., & Astuti, L. D. (2023). Profiles of Science Reasoning from Lawson’s Perspective: A Comparative Study. Jurnal Pendidikan Fisika, 11(1), 55–64. https://doi.org/10.26618/jpf.v11i1.18658

Mubarokiyah, T. A., Aripin, A., & Rizal, R. (2024). RADEC Learning Model: Practicum to Enhance Students’ Science Process Skills on Temperature and Heat. JIPF (Jurnal Ilmu Pendidikan Fisika), 9(3), 415. https://doi.org/10.26737/jipf.v9i3.5641

Ningrum, T., Handayani, R., & Maryani, M. (2024). Investigasi Kemampuan Bernalar Ilmiah Siswa Melalui Implementasi Model Problem Based Learning Materi Fisika Fluida Statis. JPF (Jurnal Pendidikan Fisika) FKIP UM Metro, 12(1), 68–80. http://dx.doi.org/10.24127/jpf.v12i1.9433

OECD. (2023). PISA 2022 Results: The State of Learning and Equity in Education (Vol. 1). https://doi.org/10.1787/53f23881-en

Parinduri, S. N., Hati, S., Zakiah, P., & Sari, N. (2025). Analisis Kemampuan Pemahaman Konsep Siswa Kelas VII SMP Swasta Al Manar Materi Gerak dan Gaya. Jurnal Lontar Physics Today, 4(1), 1–6. https://doi.org/10.26877/lpt.v4i1.21586

Pascaeka, L., Bektiarso, S., & Harijanto, A. (2023). Scientific Reasoning Skills and Scientific Attitudes of Students in Learning Physics Using Guided Inquiry Model with Vee Map. Jurnal Penelitian Pendidikan IPA, 9(11), 9610–9618. https://doi.org/10.29303/jppipa.v9i11.4467

Purwanto. (2014). Evaluasi Hasil Belajar. Pustaka Pelajar.

Rohmantika, N., & Pratiwi, U. (2022). Pengaruh Metode Eksperimen dengan Model Inkuiri Terbimbing Terhadap Kemampuan Berpikir Kreatif Peserta Didik Pada Pembelajaran Fisika. Jurnal Lontar Physics Today, 1(1), 9–17. https://doi.org/10.26877/lpt.v1i1.10340

Schlatter, E. (2020). Individual Differences in Children’s Development of Scientific Reasoning Through Inquiry-Based Instruction: Who Needs Additional Guidance? Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.00904

Siahaan, D., Ratno, S., Saragih, D., Nainggolan, F., Nisa, K., Bangun, M., Hardiyanti, S., & Nur’aini, S. (2025). Analisis Miskonsepsi Pada Pembelajaran IPA Materi Suhu. JICN: Jurnal Intelek dan Cendikiawan Nusantara, 2(2), 1023–1033. https://jicnusantara.com/index.php/jicn/article/view/3129

Suciati, R., Sarwanto, S., & Ekawati, E. (2024). Analisis Buku Fisika Siswa pada Materi Suhu dan Kalor menggunakan Instrumen Science Textbook Rating System (STRS). Jurnal Lontar Physics Today, 3(3), 103–110. https://doi.org/10.26877/lpt.v3i3.20337

Taniatara, M. B., & Wulandari, F. (2024). Pengaruh Model Pembelajaran Kooperatif Jigsaw Tipe II terhadap Kemampuan Penalaran Sains Siswa dalam Kurikulum Merdeka di Sekolah Dasar. Jurnal Pendidikan Guru Sekolah Dasar, 1(3), 1–13. https://doi.org/10.47134/pgsd.v1i3.402

Treagust, D. F. (1988). Development and Use of Diagnostic Tests to Evaluate Students’ Misconceptions in Science. International Journal of Science Education, 10(2), 159–169. https://doi.org/10.1080/0950069880100204

Wilujeng, I., & Wibowo, H. A. C. (2021). Penalaran Ilmiah Mahasiswa Calon Guru Fisika dalam Pembelajaran Daring. Edu Cendikia: Jurnal Ilmiah Kependidikan, 1(2), 46–54. https://doi.org/10.47709/educendikia.v1i2.1025

Yusa, I. W., Hadi, W. P., & Suwandi, S. (2022). Analisis Profil Scientific Reasoning Ability dan Korelasi terhadap Hasil Penilaian Akhir Semester Peserta Didik pada Pembelajaran IPA. Jurnal Pendidikan MIPA, 12(3), 902–911. https://doi.org/10.37630/jpm.v12i3.689

Zebua, N. (2025). Education Transformation: Implementation of Deep Learning in 21st-Century Learning. Harmoni Pendidikan: Jurnal Ilmu Pendidikan, 2(2), 146–152. https://doi.org/10.62383/hardik.v2i2.1405

Downloads

Published

2026-01-09

Data Availability Statement

No public repository is currently available for the dataset used in this study. However, the research instrument (two-tier multiple-choice test), scoring guidelines, and summarized data supporting the findings of this study can be obtained from the corresponding author upon reasonable request. Any data shared will be anonymized and provided in accordance with ethical standards and institutional regulations.

Issue

Section

Articles - Physics Education

How to Cite

Anjiana, R., Surahman, E., Rizal, R. ., Hernawati, D. ., & Badriah, L. (2026). Scientific Reasoning Skills in Physics Education: A Preliminary Analysis of High School Students’ Competence in Temperature and Heat. Lontar Physics Today, 5(1), 17-30. https://doi.org/10.26877/lpt.v5i1.220